Topic 3 Thermodynamics

The study of transformations of energy Heat \leftrightarrow Work

Thermochemistry: The study the heat changes of reactions Electrochemistry: electricity and chemistry Bioenergetics: energy in living organisms

Two laws of bioenergetics

• The law of conservation of energy

• Entropy & the 2nd law of thermodynamics

Key concepts E transfer will always proceed in the direction of increased entropy & the release of "free energy"

The conservation of energy

- Energy is the capacity to do work or to product heat.
 - Work is done to achieve motion against an opposing force.
 - Heat is energy in transit as a result of a temperature difference.
- All forms of energy can be interconverted.
- The total energy in the universe remain constant.

Systems and surroundings

- **System** part of the universe on which we wish to focus attention. \Rightarrow (reactants + products)
- Surroundings include everything else in the universe. ⇒ rxn's container, the room

Concept Check

Classify each process as exothermic or endothermic. Explain. The system is underlined in each example.

- Exo a) Your hand gets cold when you touch ice.
- Endo b) The ice gets warmer when you touch it.
- Endo c) <u>Water</u> boils in a kettle being heated on a stove.
- Exo d) <u>Water vapor</u> condenses on a cold pipe.Endo e) <u>Ice cream</u> melts.

For each of the following, define a system and its surroundings and give the direction of energy transfer.

- a) Methane is burning in a Bunsen burner in a laboratory.
- b) Water drops, sitting on your skin after swimming, evaporate.

Concept Check

Hydrogen gas and oxygen gas react violently to form water. Explain.

Which is lower in energy: a mixture of hydrogen and oxygen gases, or water?

Three types of systems

- Open: exchange both energy and matter with its surroundings.
- Close: exchange energy only
- Isolated: nothing

Work and Heat

 w & q are modes of transfer of energy, not forms of energy.

(a) Diathermic

Hot

- w: uniform motion
- q: random motion
 - diathermic
 - adiabatic

- P Zn(s) + 2HCl(aq) ZnCl₂(aq) + H₂(g)
 - How to detect the transfer energy? w? q?

(b) Adiabatic

The measurement of work

 $|w| = |F \times d| = |P \times A \times \Delta h| = |P\Delta V|$ expansion work $\Delta V > 0$ & w < 0 $\Rightarrow w = -P\Delta V = -RT\Delta n(g)$

For the reversible expansion $W = -\int PdV$

For a isothermal perfect gas $W = -nRT \ln (V_f / V_i)$

Ex: Work done by a chemical reaction

Determine work done by 1 mol propane & its rxn as follow:

 $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(I)$

The measurement of heat

- Heat capacity: $C = q/\Delta T$ $q = C \Delta T$
- molar heat capacity : $C_m \Rightarrow JK^{-1}mol^{-1}(C_s?)$
- Calorimeter: way to measure q transfer
- Heat influx during expansion
 For isothermal perfect gas

q = - w

& for reversible perfect gas

 $q = nRT \ln (V_f / V_i)$

• w & q are Path function

Internal energy (U)

- the sum of all the kinetic and potential energy of all atoms, ions, and molecules in the system.
- Only can deal with ΔU , not with U itself.
- $\Delta U = w + q$

- Ex: What is ΔU ?
- (1) A perfect gas is isothermal expansion.
- (2) Someone does 622 kJ of work on exercise bicycle and losses 82 kJ of energy as heat. Disregard any matter loss by perspiration.

Internal energy as a state function

- State function: Path independence
- 1st law: for an isolated system U is constant

• At constant volume, non-expansion work $\Delta U = q_v + w$ $= C_v \Delta T$

Enthalpy

- Ex: the oxidation of a fat in a body:
- For consumption of 1g fat at $25^{\circ}C$ $2C_{57}H_{110}O_6(s) + 163O_2(g) \rightarrow 114 CO_2(g) + 110 H_2O(I)$
- $\Delta V = ?, w > 0 \text{ or } < 0?$

H of a system, U of the system avoiding w.

Enthalpy

(1) $H = U + PV \implies \Delta H = \Delta U + \Delta (PV)$ → state function $\Delta H = H_f - H_i$ (2) at const. pressure : $\Delta U = q_p + w = q_p - P\Delta V$ \Rightarrow q_p = Δ U + P Δ V (3) from (1) & (2) $\Delta H = q_p = C_p \Delta T$

At const. P, the change in enthalpy (Δ H) of the sys. is equal to the **energy flow as heat**.

(4) for chemical rxn : $\Delta H = H_f - H_i$ $= H_{products} - H_{reactants}$ $\Delta H > 0 \qquad \text{endothermic rxn}$

 $\Delta H < 0$ exothermic rxn

The T variation of the H Enthalpy and internal energy Enthalpy and internal energyEnthalpy, H C_{i} Internal energy, U Temperature, $T \rightarrow$ Temperature, $T \rightarrow$

- $H = C_p \Delta T > U = C_v \Delta T$
- for perfect gas, $C_p C_v = R$

Road map of key equation

Blue boxes are relations for perfect gases.

Page 67: 2.19, 2.20, 2.22

Question: Find w, q, ΔU , ΔH for the path up & down.

① & ④
$$\Rightarrow \Delta P = 0$$

 $w = -P\Delta V$
 $q = q_P = \Delta H = nC_P\Delta T$
 $\Delta U = q + w = nC_V\Delta T$
where $\Delta T = \Delta PV/nR$

$$V_{i} = 10.0 L$$

$$P_{i} = 2.0 \text{ atm}$$

$$V_{m} = 30.0 L$$

$$P_{m} = 2.0 \text{ atm}$$

$$V_{f} = 30.0 L$$

$$V_{f} = 30.0 L$$

$$P_{f} = 1.0 \text{ atm}$$

② & ③ ⇒
$$\Delta V = 0$$

 $w = 0$
 $q = q_V = \Delta E = nC_V \Delta T$
 $\Delta H = nC_P \Delta T$
where $\Delta T = \Delta PV/nR$

summary

$$\begin{array}{l} W_{up} \neq W_{down} \\ q_{up} \neq q_{down} \end{array} \end{array} \xrightarrow{} \Rightarrow \text{Path function} \\ \Delta U_{up} = \Delta U_{down} \\ \Delta H_{up} = \Delta H_{down} \end{array} \xrightarrow{} \Rightarrow \text{State functions}$$

Homework (3/17/2014)

- Discussion:
 - -2.9
- Exercises:

-2.3, 2.6, 2.7, 2.10, 2.15, 2.23

Applications of the first law Enthalpy

(1) H is a state function.

 $\Delta H = H_f - H_i$

(2)
$$A + B \rightarrow C + D$$
 ΔH
 $C + D \rightarrow A + B$ $-\Delta H$

Standard enthalpy

- (1) \triangle H depend on Temp. & Pressure standard \Rightarrow 25°C 1atm
- (2) ΔH^{o}_{rxn} : standard H change in reaction
- (3) ΔH_{f}° : ΔH° of a rxn for the formation of one mole of a compound directly from its elements.

(4) $\triangle H_{f}^{\circ} = 0$ for all the elements

(5) $\Delta H^{o}_{rxn} = \Sigma \Delta H^{o}_{f}$ (products) $-\Sigma \Delta H^{o}_{f}$ (reactants)

The combination of reaction: using Hess's law

The combination of reaction:

 $2B_{(S)} + 3H_{2(g)} \rightarrow B_2H_{6(g)} \Delta H^o = ?$

Solve: (a) - (b) + 3(C) + 3(d)

Homework (3/17/2014)

- Exercises:
 - -3.28
 - -3.32

The second law

 (1) spontaneous process : it occurs without outside intervention.
 (2) spontaneous rxn & speed ⇒ thermodynamics vs kinetics

> the science of E transfer predict occur

vs study of the rates of rxn why somes are fast or slow?

ex. $2Na_{(s)} + 2H_2O_{(1)} \longrightarrow 2NaOH_{(aq)} + H_{2(g)}$ Product favored \longrightarrow ; \leftarrow reactant favored (spontaneous rxn)

Spontaneous reaction

Nonspontaneous reaction

(3) why product - favored ?

 $\Delta H < 0 \implies \text{energy} \checkmark ?$ (exothermic)

How about $H_2O_{(s)} \rightarrow H_2O_{(I)} \quad \Delta H > 0$ at 0°C

(4) something else $! \Rightarrow$ Entropy (S)

- S = the driving force for a spontaneous process is an increase in the entropy of the universe.
 - = a measure of randomness or disorder of a system the great the randomness, the greater S.
 - = the number of arrangements \Rightarrow probability the higher probability, the higher **S**

(5) $S \ge 0$ (S = 0 for a perfect crystal at 0 K) (6) $\Delta S = S_f - S_i$ (7) generalization : a) $S_{(q)} >> S_{(f)} > S_{(s)}$ b) S : more complex molecules > simpler (ex): CH₃CH₂CH₂ CH₃ > CH₃CH₃ > CH₄ c) S: ionic solid (weaker force) > ionic solid (stronger force) (ex) : NaF_(s) > MgO_(s) d) liq and solid dissolve in a solvent $\Delta S > 0$ gas dissolve in a solvent $\Delta S < 0$

Predict the sign of ΔS for each of the following, and explain:

- + a) The evaporation of alcohol
- b) The freezing of water
- c) Compressing an ideal gas at constant temperature
- + d) Heating an ideal gas at constant pressure
- + e) Dissolving NaCl in water

Entropy and the second law

Suniverse

 $\Delta S_{\text{univ.}} > 0 \quad \text{for spontaneous rxn}$ $\Delta S_{\text{univ.}} = \Delta S_{\text{sys.}} + \Delta S_{\text{surr.}}$

- For quantitatively useful:
- $\Delta S = q_{rev}/T$ at cont. T (isothermal)
- $\Delta S = nR \ln(V_f/V_i) q_{rev}/T$ for perfect gas

In any spontaneous process, there is always an increase in the entropy of the universe

 $\Delta S_{\text{univ.}} > 0$ for spontaneous rxn $\Delta S_{\text{univ.}} = \Delta S_{\text{sys.}} + \Delta S_{\text{surr.}}$

System:rxn $R \Longrightarrow P$ $\begin{cases} \Delta S_{univ.} > 0 & rxn \rightarrow \\ \Delta S_{univ} < 0 & rxn \leftarrow \\ \Delta S_{univ} = 0 & rxn \text{ at equilibrium} \end{cases}$

ex)
$$H_2O_{(1)} \longrightarrow H_2O_{(g)}$$

(1) System

 $(I) \rightarrow (g)$ 18 ml (1 mol) → 31 L $\Delta S_{sys.} > 0$

(2) Surrounding

a) <u>sign</u> (+ or -) depend on "heat flow" exothermic process $\Rightarrow \Delta S_{surr} > 0$ endothermic process $\Rightarrow \Delta S_{surr} < 0$ b) <u>magnitude</u> depend on the temp. $T \ge 100 \text{ °C}$ for rxn $H_2O_{(l)} \longrightarrow H_2O_{(g)}$

 $\Delta S_{surr} = -\frac{\Delta H}{T} \quad \frac{\text{const. T \& P}}{q_p = |\Delta H|}$

(3)
$$\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}$$

Signs of Entropy Changes

TABLE 17.3 > Interplay of ΔS_{sys} and ΔS_{surr} in Determining the Sign of ΔS_{univ}

$\Delta \mathbf{S}_{surr}$	ΔS_{univ}	Process Spontaneous?
+	+	Yes
—	—	No (reaction will occur in opposite direction)
_	?	Yes, if ΔS_{sys} has a larger magnitude than ΔS_{surr}
+	?	Yes, if ΔS_{surr} has a larger magnitude than ΔS_{sys}
	Δ S _{surr} + - + +	$\begin{array}{c c} \Delta S_{surr} & \Delta S_{univ} \\ + & + \\ - & - \\ - & ? \\ + & ? \end{array}$

 ΔS_{surr}

- The sign of ΔS_{surr} depends on the direction of the heat flow.
- The magnitude of $\Delta\, {\bf S}_{\rm surr}\, {\rm depends}$ on the temperature.

Exothermic process: $\Delta S_{surr} = + \frac{\text{quantity of heat (J)}}{\text{temperature (K)}}$ Endothermic process: $\Delta S_{surr} = -\frac{\text{quantity of heat (J)}}{\text{temperature (K)}}$

The Gibbs energy focusing on the system

G is a thermodynamic function that gives information about the spontaneity of the system.

G = H - TS (for system) $\Delta G = \Delta H - T\Delta S_{sys}$ (const. T & P)

$$-\frac{\Delta G}{T} = -\frac{\Delta H}{T} + \Delta S_{\text{sys}}$$
$$-\frac{\Delta G}{T} = \Delta S_{\text{surr}} + \Delta S_{\text{sys}} = \Delta S_{\text{univ}}$$
$$\Delta S_{\text{univ}} = -\frac{\Delta G}{T} \begin{cases} \Delta G < 0 & R \to P & \text{spontaneou} \\ \Delta G > 0 & R \leftarrow P & \text{nonspontaneous} \\ \Delta G = 0 & R \leftrightarrows P & \text{equilibrium} \end{cases}$$

$\Delta G = \Delta H - T \Delta S_{sys}$

$\Delta H^{o} < 0$	$\Delta H^{o} > 0$	
$\Delta S^{o} > 0$	$\Delta S^{o} > 0$	
at All temp.	spontaneous at High temp.	
$\Delta H^{o} < 0$	$\Delta H^{o} > 0$	
$\Delta S^{o} < 0$	$\Delta S^{o} < 0$	
at Low temp.	No Way !!	

Concept Check

A liquid is vaporized at its boiling point. Predict the signs of:

Explain your answers.

Exercise

The value of $\Delta H_{vaporization}$ of substance X is 45.7 kJ/mol, and its normal boiling point is 72.5°C.

Calculate ΔS , ΔS_{surr} , and ΔG for the vaporization of one mole of this substance at 72.5°C and 1 atm.

 $\Delta S = 132 \text{ J/K-mol}$ $\Delta S_{\text{surr}} = -132 \text{ J/K-mol}$ $\Delta G = 0 \text{ kJ/mol}$

Concept Check

Gas A_2 reacts with gas B_2 to form gas AB at constant temperature and pressure. The bond energy of AB is much greater than that of either reactant.

Predict the signs of: ΔH ΔS_{surr} ΔS ΔS_{univ} -+0+Explain.

(2) enthalpy (H) (at const. P) ΔH determines a rxn exothermic endothermic (3) free energy (G) (at const. T & P) ΔG determines a rxn { nonspontaneous equilibrium (4) $S \rightarrow \text{absolute values} \qquad \Delta S_{T_1 \rightarrow T_2}$ S = 0 for a perfect crystal at 0 °K 3rd law of thermodynamics (5) standard entropy S^o (298 K & 1 atm) $\Delta S_{\rm rxn}^{\rm o} = \sum S_{\rm products}^{\rm o} - \sum S_{\rm reactants}^{\rm o}$

Standard G

- (1) ΔH° : measured by calorimeter
- (2) ΔG° : standard free energy change 25 °C , 1 atm
 - 1 The more negative the value of ΔG° , the further a rxn will go to the right.
 - ② calculated by $\Delta G^{\circ} = \Delta H^{\circ} T \Delta S^{\circ}$
 - ③ ΔG^{o}_{rxn} can be calculated by using Hess's law.
 - ④ ΔG_{f}^{o} = standard free energy of formation

$$\Delta G_{rxn}^{o} = \sum \Delta G_{f \text{ (products)}}^{o} - \sum \Delta G_{f \text{ (reactant)}}^{o}$$
$$\Delta G_{f}^{o} = 0 \text{ for elements}$$

Ex: ΔG^{o}_{rxn} calculated using Hess's law

$$C_{(s)}^{\text{diamond}} + O_{2_{(g)}} \rightarrow CO_{2_{(g)}} \quad \Delta G^{\circ} = -397 \text{kJ}$$

$$C_{(s)}^{\text{graphite}} + O_{2_{(g)}} \rightarrow CO_{2_{(g)}} \quad \Delta G^{\circ} = -394 \text{kJ}$$

$$\implies C_{(s)}^{\text{diamond}} \rightarrow C_{(s)}^{\text{graphite}} \quad \Delta G^{\circ} = -3 \text{kJ}$$

$$\downarrow$$
kinetically stable
thermodynamically unstable
thermodynamically unstable
rxn \leftarrow when high temp.

Concept Check

A stable diatomic molecule spontaneously forms from its atoms.

Predict the signs of: $\Delta H^{\circ} \qquad \Delta S^{\circ} \qquad \Delta G^{\circ}$ $- \qquad - \qquad -$ Explain.

Free Energy and Pressure $G = G^{\circ} + RT \ln(P)$

or

$\Delta G = \Delta G^{\circ} + RT \ln(Q)$

(1)
$$S_{\text{large V}} > S_{\text{small V}} \implies S_{\text{low P}} > S_{\text{high P}}$$

 $G = G^{\circ} + \text{RT } In(\text{P})$
 $\begin{cases} G^{\circ} : \text{the gas at the P} = 1 \text{ atm} \\ G : \text{the gas at the P} = \text{P} \end{cases}$

ex.
$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$

 $\Delta G = \Sigma G_{\text{products}} - \Sigma G_{\text{reactants}}$
 $= 2G_{\text{NH}_3} - (G_{\text{N}_2} + 3G_{\text{H}_2})$
where $G_{\text{NH}_3} = G^{\circ}_{\text{NH}_3} + \text{RT} \ln(\text{P}_{\text{NH}_3})$
 $G_{\text{N}_2} = ?$
 $G_{\text{H}_2} = ?$

$$\begin{split} \Delta G &= (2G^{\circ}_{\mathsf{NH}_3} - G^{\circ}_{\mathsf{N}_2} - 3G^{\circ}_{\mathsf{H}_2}) \\ &+ \mathsf{RT} \left[2In(\mathsf{P}_{\mathsf{NH}_3}) - In(\mathsf{P}_{\mathsf{N}_2}) - 3In(\mathsf{P}_{\mathsf{H}_2}) \right] \\ &= \Delta G^{\circ} + \mathsf{RT} In[(\mathsf{P}_{\mathsf{NH}_3})^2 / (\mathsf{P}_{\mathsf{N}_2})(\mathsf{P}_{\mathsf{H}_2})^3] \end{split}$$

 $\Delta G = \Delta G^o + \mathsf{RT} I n \mathsf{Q}$

(2) The meaning of ΔG for a chemical rxn.

• The equilibrium point occurs at the lowest value of free energy available to the reaction system.

$$\Delta G = 0 = \Delta G^{\circ} + RT \ln(K)$$
$$\Delta G^{\circ} = -RT \ln(K)$$

(2) Temp. dependence

$$\Delta G^{o} = -\mathsf{RT} I n \mathsf{K} = \Delta \mathsf{H}^{o} - \mathsf{T} \Delta S^{o}$$

$$\ln \mathbf{K} = -\frac{\Delta \mathbf{H}^o}{\mathbf{R}} (\frac{1}{\mathbf{T}}) + \frac{\Delta S^o}{\mathbf{R}}$$

y = mx + b(In K) vs. (1/T)

$$N_{2_{(g)}} + 3H_{2_{(g)}} \leftrightarrows 2NH_{3_{(g)}}$$

 $\Delta G^o = -33.3 \text{ kJ}$ at 25°C

(a)
$$P_{NH_3} = 1.00$$
, $P_{N_2} = 1.47$ atm,
 $P_{H_2} = 1.00 \times 10^{-2}$ atm

predict the rxn direction to reach equilibrium?

Solution : $\Delta G = \Delta G^{o} + RT InQ$

Calculate k for the follow rxn at 25 °C 4Fe $_{(s)}$ + 3O_{2(g)} \leftrightarrows 2Fe₂O_{3(s)}

∆Hº _f (kJ/mol)	0	0	-826
ΔS^{o}_{f} (J/kmol)	27	205	90

Solution : $\Delta G = \Delta G^o + RT lnQ$ $\Delta G^o = \Delta H^o - T\Delta S^o$

ex. Calculate k for $\frac{1}{2}N_{2_{(g)}} + \frac{3}{2}H_{2_{(g)}} \xrightarrow{k} NH_{3_{(g)}} \Delta H^{o} = -92 \text{ kJ}$ $k = 3.7 \times 10^{-6}$ at T = 900 Kat T = 550 Kk = ?