Topic 3
 Thermodynamics

The study of transformations of energy Heat \leftrightarrow Work

Thermochemistry: The study the heat changes of reactions Electrochemistry: electricity and chemistry
Bioenergetics: energy in living organisms

Two laws of bioenergetics

- The law of conservation of energy

Key concepts

E. can NOT be created or destroyed,

But

can be changed from one to another

- Entropy \& the $2^{\text {nd }}$ law of thermodynamics

Key concepts
E transfer will always proceed in
the direction of increased entropy
\&
the release of
"free energy"

The conservation of energy

- Energy is the capacity to do work or to product heat.
- Work is done to achieve motion against an opposing force.
- Heat is energy in transit as a result of a temperature difference.
- All forms of energy can be interconverted.
- The total energy in the universe remain constant.

Systems and surroundings

- System - part of the universe on which we wish to focus attention. \Rightarrow (reactants + products) Surroundings - include everything else in the universe. \Rightarrow rxn's container, the room

$\Delta U=q+w$
(internal energy of a system)

Classify each process as exothermic or endothermic. Explain. The system is underlined in each example.

Exo a) \quad Your hand gets cold when you touch
Endo b) The ice gets warmer when you touch it.
Endo c) Water boils in a kettle being heated on a stove.
Exo d) Water vapor condenses on a cold pipe. Endo e) Ice cream melts.

Concept Check

For each of the following, define a system and its surroundings and give the direction of energy transfer.
a) Methane is burning in a Bunsen burner in a laboratory.
b) Water drops, sitting on your skin after swimming, evaporate.

Hydrogen gas and oxygen gas react violently to form water. Explain.

- Which is lower in energy: a mixture of hydrogen and oxygen gases, or wate?

Three types of systems

- Open: exchange both energy and matter with its surroundings.
- Close: exchange energy only
- Isolated: nothing

Work and Heat

- $\mathrm{w} \& \mathrm{q}$ are modes of transfer of energy, not forms of energy.
- w: uniform motion
- q: random motion
- diathermic
- adiabatic

- $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
- How to detect the transfer energy? w? q?

The measurement of work

$|w|=|F \times d|=|P \times A \times \Delta h|=|P \Delta V|$ expansion work $\Delta V>0$ \& $w<0$
$\Rightarrow \mathrm{w}=-\mathrm{P} \Delta \mathrm{V}=-\mathrm{RT} \Delta \mathrm{n}(\mathrm{g})$
For the reversible expansion $\mathrm{W}=-\int \mathrm{PdV}$

For a isothermal perfect gas
$\mathrm{w}=-\mathrm{nRT} \ln \left(\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}\right)$
Ex: Work done by a chemical reaction
Determine work done by 1 mol propane \& its rxn as follow:
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

The measurement of heat

- Heat capacity: $C=q / \Delta T \quad q=C \Delta T$
- molar heat capacity : $\mathrm{C}_{\mathrm{m}} \Rightarrow \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\left(\mathrm{C}_{\mathrm{s}}\right.$?)
- Calorimeter: way to measure q transfer
- Heat influx during expansion

For isothermal perfect gas

$$
q=-w
$$

\& for reversible perfect gas

$$
q=n R T \ln \left(V_{f} / V_{i}\right)
$$

- w \& q are Path function

Internal energy (U)

- the sum of all the kinetic and potential energy of all atoms, ions, and molecules in the system.
- Only can deal with $\Delta \mathbf{U}$, not with \mathbf{U} itself.
- $\quad \Delta \mathrm{U}=\mathrm{w}+\mathrm{q}$

Ex: What is ΔU ?
(1) A perfect gas is isothermal expansion.
(2) Someone does 622 kJ of work on exercise bicycle and losses 82 kJ of energy as heat. Disregard any matter loss by perspiration.

Internal energy as a state function

- State function: Path independence
- 1st law:
for an isolated system U is constant

- At constant volume, non-expansion work
$\Delta U=q_{v}+w$
$=\mathrm{C}_{\mathrm{v}} \Delta \mathrm{T}$

Enthalpy

Ex: the oxidation of a fat in a body:

For consumption of 1 g fat at $25^{\circ} \mathrm{C}$
$2 \mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}(\mathrm{~s})+163 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 114 \mathrm{CO}_{2}(\mathrm{~g})+110 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\Delta \mathrm{V}=$?, $\mathrm{w}>0$ or <0 ?

H of a system, U of the system avoiding w.

Enthalpy

(1) $\mathrm{H}=\mathrm{U}+\mathrm{PV} \Rightarrow \Delta \mathrm{H}=\Delta \mathrm{U}+\Delta$ (PV) \longleftrightarrow state function $\Delta \mathrm{H}=\mathrm{H}_{f}-\mathrm{H}_{i}$
(2) at const. pressure :

$$
\begin{aligned}
& \Delta U=q_{p}+w=q_{p}-P \Delta V \\
& \Rightarrow q_{p}=\Delta U+P \Delta V
\end{aligned}
$$

(3) from (1) \& (2)

$$
\Delta H=q_{p}=C_{p} \Delta T
$$

At const. P, the change in enthalpy $(\Delta \mathrm{H})$ of the sys. is equal to the energy flow as heat.
(4) for chemical rxn :

$$
\begin{aligned}
\Delta \mathrm{H} & =\mathrm{H}_{f}-\mathrm{H}_{i} \\
& =\mathrm{H}_{\text {products }}-\mathrm{H}_{\text {reactants }}
\end{aligned}
$$

$\Delta \mathrm{H}>0 \quad$ endothermic rxn
 $\Delta \mathrm{H}<0 \quad$ exothermic rxn

The T variation of the H

- $\mathrm{H}=\mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}>\mathrm{U}=\mathrm{C}_{v} \Delta \mathrm{~T}$
- for perfect gas, $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$

Road map of key equation

Blue boxes are relations for perfect gases.

Page 67: 2.19, 2.20, 2.22

Question: Find w, q, $\Delta \mathrm{U}, \Delta \mathrm{H}$ for the path up \& down.

(1) \& (4) $\Rightarrow \Delta \mathrm{P}=0$

$$
\begin{aligned}
& \mathrm{w}=-\mathrm{P} \Delta \mathrm{~V} \\
& \mathrm{q}=\mathrm{q}_{\mathrm{P}}=\Delta \mathrm{H}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{~T} \\
& \Delta \mathrm{U}=\mathrm{q}+\mathrm{w}=\mathrm{nC}_{\mathrm{V}} \Delta \mathrm{~T}
\end{aligned}
$$

where $\Delta T=\Delta P V / n R$

(2) \& (3) $\Rightarrow \Delta V=0$

$$
\begin{aligned}
& \mathrm{w}=0 \\
& \mathrm{q}=\mathrm{q}_{\mathrm{v}}=\Delta \mathrm{E}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{~T} \\
& \Delta \mathrm{H}=\mathrm{nC} C_{p} \Delta T \\
& \text { where } \Delta T=\Delta P \mathrm{~V} / \mathrm{nR}
\end{aligned}
$$

summary

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
\mathrm{w}_{\mathrm{up}} \neq \mathrm{w}_{\text {down }} \\
\mathrm{q}_{\mathrm{up}} \neq \mathrm{q}_{\mathrm{down}} \\
\Delta \mathrm{U}_{\mathrm{up}}=\Delta \mathrm{U}_{\text {down }} \\
\Delta \mathrm{H}_{\mathrm{up}}=\Delta \mathrm{H}_{\text {down }}
\end{array}\right\} \Rightarrow \text { Path function }
\end{array}\right\} \Rightarrow \text { State functions }
$$

Homework (3/17/2014)

- Discussion:
-2.9
- Exercises:
-2.3, 2.6, 2.7, 2.10, 2.15, 2.23

Applications of the first law Enthalpy

(1) H is a state function.

$$
\Delta H=H_{f}-H_{i}
$$

(2) $A+B \rightarrow C+D$

$$
C+D \rightarrow A+B
$$

$$
-\Delta \mathrm{H}
$$

(3) $2 \mathrm{~A}+2 \mathrm{~B} \rightarrow 2 \mathrm{C}+2 \mathrm{D} \quad 2 \Delta \mathrm{H}$

Standard enthalpy

(1) $\Delta \mathrm{H}$ depend on Temp. \& Pressure standard $\Rightarrow 25^{\circ} \mathrm{C}$ 1atm
(2) $\Delta \mathrm{H}^{\mathrm{o}}{ }_{\mathrm{rxn}}$: standard H change in reaction
(3) $\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}} \quad: \Delta \mathrm{H}^{\circ}$ of a rxn for the formation of one mole of a compound directly from its elements.
(4) $\triangle \mathrm{H}_{\mathrm{f}}^{\circ}=0$ for all the elements
(5) $\Delta \mathrm{H}_{\mathrm{rxn}}=\Sigma \Delta \mathrm{H}_{\mathrm{f}}$ (products) $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}$ (reactants)

The combination of reaction: using Hess's law

For propene $\Delta \mathrm{H}^{\circ}=$?

The combination of reaction:

$2 \mathrm{~B}_{(\mathrm{S})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{B}_{2} \mathrm{H}_{6(\mathrm{~g})} \quad \Delta \mathrm{H}^{\mathrm{o}}=?$

Given:
$\Delta \mathrm{H}^{\circ}$
-1273 kJ
-2035 KJ
-286 KJ
44 KJ

Solve: $(a)-(b)+3(C)+3(d)$

H of reaction

Endothermic \& Exothermic

Homework (3/17/2014)

- Exercises:
-3.28
-3.32

The second law

(1) spontaneous process:
it occurs without outside intervention.
(2) spontaneous rxn \& speed
\Rightarrow thermodynamics vs kinetics

the science of E transfer predict occur
vs study of the rates of rxn why somes are fast or slow?
ex. $2 \mathrm{Na}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow 2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$
Product favored \longrightarrow; \longleftarrow reactant favored (spontaneous rxn)

(3) why product - favored?
$\Delta \mathrm{H}<0 \Rightarrow$ energy \downarrow ? (exothermic)
How about $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Delta \mathrm{H}>0$ at $0^{\circ} \mathrm{C}$
(4) something else $!\Rightarrow$ Entropy (S)
$S=$ the driving force for a spontaneous process is an increase in the entropy of the universe.
$=$ a measure of randomness or disorder of a system the great the randomness, the greater \mathbf{S}.
$=$ the number of arrangements \Rightarrow probability the higher probability, the higher S
(5) $S \geq 0$ ($S=0$ for a perfect crystal at 0 K)
(6) $\Delta S=S_{f}-S_{i}$
(7) generalization :
a) $S_{(\mathrm{g})} \gg S_{(\mathrm{l})}>S_{(\mathrm{s})}$
b) S : more complex molecules $>$ simpler
(ex) : $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}>\mathrm{CH}_{3} \mathrm{CH}_{3}>\mathrm{CH}_{4}$
c) S : ionic solid ${ }_{\text {(weaker force) }}>$ ionic solid $_{\text {(stronger force) }}$
(ex) : $\mathrm{NaF}_{(\mathrm{s})}>\mathrm{MgO}_{(\mathrm{s})}$
d) liq and solid dissolve in a solvent $\Delta S>0$ gas dissolve in a solvent $\Delta S<0$

Concept Check

Predict the sign of ΔS for each of the following, and explain:

+ a) The evaporation of alcohol
- b) The freezing of water
- c) Compressing an ideal gas at constant temperature
+ d) Heating an ideal gas at constant pressure
+ e) Dissolving NaCl in water

Entropy and the second law

- Suniverse
$\Delta S_{\text {univ. }}>0$ for spontaneous rxn

$$
\Delta S_{\text {univ. }}=\Delta S_{\text {sys. }}+\Delta S_{\text {surr. }}
$$

- For quantitatively uséful:
- $\Delta S=\mathrm{q}_{\mathrm{rev}} / \mathrm{T}$ at cont. T (isothermal)
- $\Delta S=n R \ln \left(V_{f} / V_{i}\right) \mathrm{q}_{\text {rev }} / T$ for perfect gas

In any spontaneous process, there is always an increase in the entropy of the universe

$$
\begin{aligned}
& \Delta S_{\text {univ. }}>0 \quad \text { for spontaneous rxn } \\
& \Delta S_{\text {univ. }}=\Delta S_{\text {sys. }}+\Delta S_{\text {surr. }}
\end{aligned}
$$

System: rxn $R \rightleftharpoons P$

$$
\begin{cases}\Delta S_{\text {univ. }}>0 & \text { rxn } \rightarrow \\ \Delta S_{\text {univ }}<0 & \text { rxn } \leftarrow \\ \Delta S_{\text {univ }}=0 & \text { rxn at equilibrium }\end{cases}
$$

$$
\text { ex) } \quad \mathrm{H}_{2} \mathrm{O}_{(I)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

(1) System

$$
\begin{array}{ll}
(I) \rightarrow(\mathrm{g}) & 18 \mathrm{ml}(1 \mathrm{~mol}) \rightarrow 31 \mathrm{~L} \\
\Delta S_{\text {sys. }}>0
\end{array}
$$

(2) Surrounding
a) sign $(+$ or -$)$ depend on "heat flow"
exothermic process $\Rightarrow \Delta S_{\text {surr }}>0$
endothermic process $\Rightarrow \Delta \mathrm{S}_{\text {surr }}<0$
b) magnitude depend on the temp. $\mathrm{T} \geq 100^{\circ} \mathrm{C}$ for rxn $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

$$
\Delta S_{\text {surr }}=-\frac{\Delta H}{T} \quad \begin{array}{ll}
\text { const. } \mathrm{T} \& \mathrm{P} \\
\mathrm{q}_{\mathrm{p}}=|\Delta \mathrm{H}|
\end{array}
$$

(3) $\Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}$

TABLE $17.3>$ Interplay of $\Delta S_{\text {sys }}$ and $\Delta S_{\text {surr }}$ in Determining the Sign of $\Delta S_{\text {univ }}$
Signs of Entropy Changes

$\Delta \boldsymbol{S}_{\text {sys }}$	$\Delta \boldsymbol{S}_{\text {surr }}$	$\Delta \boldsymbol{S}_{\text {univ }}$	
+	+	+	Process Spontaneous?
-	-	-	Yes
+	-	$?$	No (reaction will occur in opposite direction)
-	+	$?$	Yes, if $\Delta S_{\text {sys }}$ has a larger magnitude than $\Delta S_{\text {surr }}$
		Yes, if $\Delta S_{\text {surr }}$ has a larger magnitude than $\Delta S_{\text {sys }}$	

$\Delta S_{\text {surr }}$

- The sign of $\Delta S_{\text {surr }}$ depends on the direction of the heat flow.
- The magnitude of $\Delta \mathrm{S}_{\text {surr }}$ depends on the temperature.

The Gibbs energy focusing on the system

G is a thermodynamic function that gives information about the spontaneity of the system.

$$
\begin{aligned}
G & =\mathrm{H}-\mathrm{TS} \quad(\text { for system }) \\
\Delta G & =\Delta \mathrm{H}-\mathrm{T} \Delta S_{\text {sys }}(\text { const. T \& P) }
\end{aligned}
$$

$$
-\frac{\Delta G}{\mathrm{~T}}=-\frac{\Delta H}{\mathrm{~T}}+\Delta S_{\mathrm{sys}}
$$

$$
-\frac{\Delta G}{\mathrm{~T}}=\Delta S_{\text {surr }}+\Delta S_{\mathrm{sys}}=\Delta S_{\text {univ }}
$$

$$
\Delta S_{\text {univ }}=-\frac{\Delta G}{\mathrm{~T}}\left\{\begin{array}{lll}
\Delta G<0 & \mathrm{R} \rightarrow \mathrm{P} & \text { spontaneou } \\
\Delta G>0 & \mathrm{R} \leftarrow \mathrm{P} & \text { nonspontaneous } \\
\Delta G=0 & \mathrm{R} \leftrightarrows \mathrm{P} & \text { equilibrium }
\end{array}\right.
$$

$\Delta G=\Delta \mathrm{H}-\mathrm{T} \Delta S_{\text {sys }}$

| $\Delta \mathrm{H}^{\mathrm{o}}<0$ |
| :---: | :---: |
| $\Delta S^{\circ}>0$ | \left\lvert\, | $\Delta \mathrm{H}^{\mathrm{o}}>0$ |
| :---: |
| $\Delta S^{\mathrm{o}}>0$ |
| at All temp. | | spontaneous |
| :---: |
| at High temp. |\right.

Concept Check
A liquid is vaporized at its boiling point. Predict the signs of:

w	-
q	+
ΔH	+
ΔS	+
$\Delta S_{\text {surr }}$	-
ΔG	0

Explain your answers.

Exercise

The value of $\Delta H_{\text {vaporization }}$ of substance X is 45.7 $\mathrm{kJ} / \mathrm{mol}$, and its normal boiling point is $72.5^{\circ} \mathrm{C}$.

Calculate $\Delta S, \Delta S_{\text {surr }}$, and ΔG for the vaporization of one mole of this substance at $72.5^{\circ} \mathrm{C}$ and 1 atm .

$$
\begin{aligned}
& \Delta S=132 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \\
& \Delta S_{\text {surr }}=-132 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \\
& \Delta G=0 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Concept Check

Gas A_{2} reacts with gas B_{2} to form gas $A B$ at constant temperature and pressure. The bond energy of $A B$ is much greater than that of either reactant.

Predict the signs of:
ΔH
-
Explain.
(1) ex.
(1) $\mathrm{N}_{2_{(\mathrm{g})}}+3 \mathrm{H}_{2_{(\mathrm{g})}} \rightarrow 2 \mathrm{NH}_{3_{(\mathrm{g})}}$

$$
\Delta S<0
$$

(2) $\mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{\text {(g) }}$
(3) $4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2_{(\mathrm{g})}} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
(2) enthalpy (H) (at const. P)
$\Delta \mathrm{H}$ determines a rxn exothermic
endothermic
(3) free energy (G) (at const. T \& P)
ΔG determines a rxn $\left\{\begin{array}{l}\text { spontaneous } \\ \text { nonspontaneous } \\ \text { equilibrium }\end{array}\right.$
(4) $S \rightarrow$ absolute values $\quad \Delta S_{T_{1} \rightarrow T_{2}}$
$S=0$ for a perfect crystal at $0{ }^{\circ} \mathrm{K}$ $3^{\text {rd }}$ law of thermodynamics
(5) standard entropy $S^{\circ}(298 \mathrm{~K} \& 1 \mathrm{~atm})$

$$
\Delta S_{\mathrm{rxn}}^{0}=\sum S_{\text {products }}^{0}-\sum S_{\text {reactants }}^{0}
$$

Standard G

(1) $\Delta \mathrm{H}^{\circ}$: measured by calorimeter
(2) ΔG° : standard free energy change $25{ }^{\circ} \mathrm{C}$, 1 atm
(1) The more negative the value of ΔG°, the further a rxn will go to the right.
(2) calculated by $\Delta G^{\circ}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta S^{\circ}$
(3) $\Delta G^{0}{ }_{r \times n}$ can be calculated by using Hess's law.
(4) $\Delta G^{\circ}=$ standard free energy of formation

$$
\begin{aligned}
& \Delta G_{r \times n}^{o}=\sum \Delta G_{f(\text { products })}^{0}-\sum \Delta G_{f(\text { reactant })}^{o} \\
& \Delta G_{f}^{\circ}=0 \text { for elements }
\end{aligned}
$$

Ex: $\Delta G^{\circ}{ }_{r x n}$ calculated using Hess's law

$$
\begin{aligned}
& \mathrm{C}_{(\mathrm{s})}^{\text {diamond }}+\mathrm{O}_{2_{(g)}} \rightarrow \mathrm{CO}_{2_{(g)}} \Delta G^{0}=-397 \mathrm{~kJ} \\
& \mathrm{C}_{(\mathrm{s})}^{\text {graphite }}+\mathrm{O}_{2_{(\mathrm{s})}} \rightarrow \mathrm{CO}_{2_{(\xi)}} \Delta G^{0}=-394 \mathrm{~kJ} \\
& \square \mathrm{C}_{(\mathrm{s})}^{\text {diamond }} \rightarrow \mathrm{C}_{(\mathrm{s})}^{\text {graphite }} \quad \Delta G^{0}=-3 \mathrm{~kJ} \\
& \quad \downarrow \\
& \text { kinetically stable } \\
& \text { thermodynamically unstable } \\
& \text { rxn } \leftarrow \text { when high temp. }
\end{aligned}
$$

Concept Check

A stable diatomic molecule spontaneously forms from its atoms.

Predict the signs of:

ΔH° - Explain.

Free Energy and Pressure

$$
G=G^{\circ}+R T \ln (P)
$$

or

$$
\Delta G=\Delta G^{\circ}+R T \ln (Q)
$$

(1) $S_{\text {large } V}>S_{\text {small } V} \Rightarrow S_{\text {low } P}>S_{\text {high } P}$

$$
G=G^{0}+\mathrm{RT} \ln (\mathrm{P})
$$

$$
\left\{G^{\circ}: \text { the gas at the } P=1 \mathrm{~atm}\right.
$$

$$
G: \text { the gas at the } P=P
$$

$$
\text { ex. } \begin{aligned}
& \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2}{ }_{(\mathrm{g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})} \\
& \Delta G=\Sigma G_{\text {products }}-\Sigma G_{\text {reactants }} \\
&=2 G_{\mathrm{NH}_{3}}-\left(G_{\mathrm{N}_{2}}+3 G_{\mathrm{H}_{2}}\right) \\
& \text { where } G_{\mathrm{NH}_{3}}=G^{o}{ }_{N H_{3}}+\mathrm{RT} \ln \left(\mathrm{P}_{\mathrm{NH}_{3}}\right) \\
& G_{\mathrm{N}_{2}}=? \\
& G_{\mathrm{H}_{2}}=?
\end{aligned}
$$

$$
\begin{aligned}
\Delta G= & \left(2 G^{o}{ }_{\mathrm{H}_{3}}-G^{o}{ }_{N_{2}}-3 G^{o} \mathrm{H}_{2}\right) \\
& +R \mathrm{RT}\left[2 \ln \left(\mathrm{P}_{\mathrm{NH}_{3}}\right)-\ln \left(\mathrm{P}_{\mathrm{N}_{2}}\right)-3 \ln \left(\mathrm{P}_{\mathrm{H}_{2}}\right)\right] \\
= & \Delta G^{o}+\mathrm{RT} \ln \left[\left(\mathrm{P}_{\mathrm{NH}_{3}}\right)^{2} /\left(\mathrm{P}_{\mathrm{N}_{2}}\right)\left(\mathrm{P}_{\mathrm{H}_{2}}\right)^{3}\right]
\end{aligned}
$$

$\Delta G=\Delta G^{\circ}+\mathrm{RT} \ln \mathrm{Q}$
(2) The meaning of ΔG for a chemical $r x n$.

(a)

(b)

- The equilibrium point occurs at the lowest value of free energy available to the reaction system.

$$
\begin{gathered}
\Delta G=0=\Delta G^{\circ}+R T \ln (K) \\
\Delta G^{\circ}=-R T \ln (K)
\end{gathered}
$$

(1) $\mathrm{A}_{(\mathrm{g})} \leftrightarrows \mathrm{B}_{(\mathrm{g})}$

$\underline{G_{B}}$

$\Rightarrow \Delta G=G_{P}-G_{r}=0$
\& $\Delta G=\Delta G^{o}+R T \ln Q$
i.e. $\Delta G=\Delta G^{o}+R T \operatorname{lnk}=0$ (equilibrium)
$\Delta G^{\circ}=-R T / n k$
(1) $\Delta G^{\circ}=0 \rightarrow k=1$
(2) $\Delta G^{o}<0 \rightarrow k>1 \quad$ products favor
(3) $\Delta G^{o}>0 \rightarrow k<1$ reactants favor
(2) Temp. dependence

$$
\begin{aligned}
& \Delta G^{0}=-\mathrm{RT} / n \mathrm{~K}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{~S}^{0} \\
& \ln \mathrm{~K}=-\frac{\Delta \mathrm{H}^{0}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}}\right)+\frac{\Delta S^{o}}{\mathrm{R}} \\
& y=m x+b \\
&(\ln \mathrm{~K}) \text { vs. }(1 / \mathrm{T})
\end{aligned}
$$

ex.

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrows 2 \mathrm{NH}_{3(\mathrm{~g})} \\
& \Delta \mathrm{G}^{\circ}=-33.3 \mathrm{~kJ} \quad \text { at } 25^{\circ} \mathrm{C}
\end{aligned}
$$

(a) $\mathrm{P}_{\mathrm{NH}_{3}}=1.00, \mathrm{P}_{\mathrm{N}_{2}}=1.47 \mathrm{~atm}$,

$$
P_{\mathrm{H}_{2}}=1.00 \times 10^{-2} \mathrm{~atm}
$$

predict the rxn direction to reach equilibrium?

Solution : $\Delta G=\Delta G^{o}+R T \ln Q$

Calculate k for the follow rxn at $25^{\circ} \mathrm{C}$

$$
4 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{O}_{(\mathrm{g})} \leftrightarrows 2 \mathrm{Fe}_{2} \mathrm{O}_{3_{(\mathrm{s})}}
$$

$\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}(\mathrm{kJ} / \mathrm{mol})$	0	0	-826
$\Delta \mathrm{~S}_{\mathrm{f}}{ }_{\mathrm{f}}(\mathrm{J} / \mathrm{kmol})$	27	205	90

Solution : $\quad \Delta G=\Delta G^{o}+\mathrm{RT} \ln \mathrm{Q}$

$$
\Delta G^{o}=\Delta \mathrm{H}^{o}-\mathrm{T} \Delta S^{o}
$$

ex.

$$
\begin{aligned}
& \text { Calculate } \mathrm{k} \text { for } \\
& \begin{array}{ll}
\frac{1}{2} \mathrm{~N}_{2_{(\mathrm{g})}}+\frac{3}{2} \mathrm{H}_{2_{(\mathrm{g})}} \xrightarrow{\mathrm{k}} \mathrm{NH}_{3_{(\mathrm{g})}} \Delta \mathrm{H}^{\mathrm{o}}=-92 \mathrm{~kJ} \\
\mathrm{k}=3.7 \times 10^{-6} & \text { at } \mathrm{T}=900 \mathrm{~K} \\
\mathrm{k}=? & \text { at } \mathrm{T}=550 \mathrm{~K}
\end{array}
\end{aligned}
$$

